skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Glavy, Joseph S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cell division is a highly regulated and guardedly orchestrated process including nuclear envelope breakdown (NEBD). A recent study from Kapoor, Adhikary, and Kotak identifies the symphonic role of a phosphatase holoenzyme in NEBD. 
    more » « less
  2. Virtual TBL is an online adaptation of the team-based learning (TBL) instructional strategy, emphasizing collaborative learning and problem-solving. The emergency shift to virtual TBL during the COVID-19 pandemic presented unique challenges. This study aims to 1) compare overall pharmacy students’ perceptions and attitudes toward face-to-face (FTF) TBL vs. virtual TBL in the didactic curriculum and stratify their perceptions and attitudes by various students’ characteristics; 2) evaluate students’ perceptions of the strengths and weaknesses of virtual TBL. 
    more » « less
  3. Our study maps the classic nuclear localization signal (cNLS) domain within WRNIP that directs the protein's nuclear positioning. 
    more » « less
  4. Abstract The development of synthetic biological systems requires modular biomolecular components to flexibly alter response pathways. In previous studies, we have established a module-swapping design principle to engineer allosteric response and DNA recognition properties among regulators in the LacI family, in which the engineered regulators served as effective components for implementing new cellular behavior. Here we introduced this protein engineering strategy to two regulators in the TetR family: TetR (UniProt Accession ID: P04483) and MphR (Q9EVJ6). The TetR DNA-binding module and the MphR ligand-binding module were used to create the TetR-MphR. This resulting hybrid regulator possesses DNA-binding properties of TetR and ligand response properties of MphR, which is able to control gene expression in response to a molecular signal in cells. Furthermore, we studied molecular interactions between the TetR DNA-binding module and MphR ligand-binding module by using mutant analysis. Together, we demonstrated that TetR family regulators contain discrete and functional modules that can be used to build biological components with novel properties. This work highlights the utility of rational design as a means of creating modular parts for cell engineering and introduces new possibilities in rewiring cellular response pathways. 
    more » « less